Tugas 4 Sensor Photodioda[kembali]
- Memahami LED,Sensor photodioda dan phototransistor serta prinsip kerjanya
- Memahami Aplikasi LED,sensor photodioda dan phototransistor
- Memahami karakteristik LED,sensor photodioda dan phototransistor
- Membuat rangkaian proteus dari LED,sensor photodioda dan phototransistor
Spesifikasi :
Resistance (Ohms) : 220 V
Power (Watts) : 0,25 W, ¼ W
Tolerance : ± 5%
Packaging : Bulk
Composition : Carbon Film
Temperature Coefficient : 350ppm/°C
Lead Free Status : Lead Free
RoHS Status : RoHs Complient
- LED
Spesifikasi :
- Photodioda
Spesifikasi :
- Silikon (Si) : Arus Gelap rendah, berkecepatan tinggi, kepekaan (sensitivitas) baik di jarak sekitar 400nm hingga 1000nm (terbaik di jarak 800nm – 900nm)
- Germanium (Ge) : Arus Gelap lebih tinggi, berkecepatan rendah, kepekaan (sensitivitas) baik di jarak sekitar 900nm – 1600nm (terbaik di jarak 1400nm – 1500nm)
- Indium gallium arsenide phosphide (InGaAsP) : Mahal, arus gelap rendah, berkecepatan tinggi, kepekaan (sensitivitas) baik di jarak sekitar 1000nm – 1350nm (terbaik di jarak 1100nm – 1300nm)
- Indium gallium arsenide (InGaAs) : Mahal, arus gelap rendah, berkecepatan tinggi, kepekaan (sensitivitas) baik di jarak sekitar 900nm – 1700nm (terbaik di jarak 1300nm – 1600nm)
- Relay JWD-107-1
- TE Internal #: 1393771-3
- TE Internal Description: JWD-107-1=REED RELAYS
-
Contact Voltage Rating (VDC): 20
-
Signal Relay Coil Power Rating (DC) (mW): 50, 72
-
Signal Relay Mounting Type : Printed Circuit Board
-
Signal Relay Terminal Type : PCB-THT
-
Signal Relay Coil Voltage Rating (VDC): 5, 6
Nomor PIN | Nama Pin | Deskripsi |
1 | Coil End 1 | Digunakan untuk memicu (On / Off) Relay, Biasanya satu ujung terhubung ke 5V dan ujung lainnya ke ground |
2 | Coil End 2 | Digunakan untuk memicu (On / Off) Relay, Biasanya satu ujung terhubung ke 5V dan ujung lainnya ke ground |
3 | Common (COM) | Common terhubung ke salah satu Ujung Beban yang akan dikontrol |
4 | Normally Close (NC) | Ujung lain dari beban terhubung ke NO atau NC. Jika terhubung ke NC beban tetap terhubung sebelum pemicu |
5 | Normally Open (NO) | Ujung lain dari beban terhubung ke NO atau NC. Jika terhubung ke NO, beban tetap terputus sebelum pemicu |
Resistor atau hambatan adalah salah satu komponen elektronika yang memiliki nilai hambatan tertentu, dimana hambatan ini akan menghambat arus listrik yang mengalir melaluinya. Sebuah resistor biasanya terbuat dari bahan campuran Carbon. Namun tidak sedikit juga resistor yang terbuat dari kawat nikrom, sebuah kawat yang memiliki resistansi yang cukup tinggi dan tahan pada arus kuat. Contoh lain penggunaan kawat nikrom dapat dilihat pada elemen pemanas setrika. Jika elemen pemanas tersebut dibuka, maka terdapat seutas kawat spiral yang biasa disebut dengan kawat nikrom.
Satuan Resistor adalah Ohm (simbol: Ω) yang merupakan satuan SI untuk resistansi listrik. Dalam sejarah, kata ohm itu diambil dari nama salah seorang fisikawan hebat asal German bernama George Simon Ohm. Beliau juga yang mencetuskan keberadaan hukum ohm yang masih berlaku hingga sekarang.
Resistor berfungsi sebagai penghambat arus listrik. Jika ditinjau secara mikroskopik, unsur-unsur penyusun resistor memiliki sedikit sekali elektron bebas. Akibatnya pergerakan elektronya menjadi sangat lambat. Sehingga arus yang terukur pada multimeter akan menunjukan angka yang lebih rendah jika dibandingkan rangkaian listrik tanpa resistor.
Namun meskipun misalnya kita menyusun rangkaian listrik tanpa resistor, bukan berarti tidak ada hambatan listrik didalamnya. Karena setiap konduktor pasti memiliki nilai hambatan, meskipun relatif kecil. Namun dalam perhitungan matematis, biasanya kita abaikan nilai hambatan pada konduktor tersebut, dan kita anggap konduktor dalam kondisi ideal. Itu berarti besar resistansi konduktor adalah nol.
Simbol dari resistor merupakan sebagai berikut :
Cara Menghitung Nilai Resistor
Berdasarkan bentuknya dan proses pemasangannya pada PCB, Resistor terdiri 2 bentuk yaitu bentuk Komponen Axial/Radial dan Komponen Chip. Untuk bentuk Komponen Axial/Radial, nilai resistor diwakili oleh kode warna sehingga kita harus mengetahui cara membaca dan mengetahui nilai-nilai yang terkandung dalam warna tersebut sedangkan untuk komponen chip, nilainya diwakili oleh Kode tertentu sehingga lebih mudah dalam membacanya.
- Berdasarkan Kode Warna
Seperti yang dikatakan sebelumnya, nilai Resistor yang berbentuk Axial adalah diwakili oleh Warna-warna yang terdapat di tubuh (body) Resistor itu sendiri dalam bentuk Gelang. Umumnya terdapat 4 Gelang di tubuh Resistor, tetapi ada juga yang 5 Gelang.
Gelang warna Emas dan Perak biasanya terletak agak jauh dari gelang warna lainnya sebagai tanda gelang terakhir. Gelang Terakhirnya ini juga merupakan nilai toleransi pada nilai Resistor yang bersangkutan.
Tabel dibawah ini adalah warna-warna yang terdapat di Tubuh Resistor :
4 Gelang Warna
Masukkan angka langsung dari kode warna Gelang ke-1 (pertama)
Masukkan angka langsung dari kode warna Gelang ke-2
Masukkan Jumlah nol dari kode warna Gelang ke-3 atau pangkatkan angka tersebut dengan 10 (10n)
Merupakan Toleransi dari nilai Resistor tersebut
Contoh :
Gelang ke 1 : Coklat = 1
Gelang ke 2 : Hitam = 0
Gelang ke 3 : Hijau = 5 nol dibelakang angka gelang ke-2; atau kalikan 105
Gelang ke 4 : Perak = Toleransi 10%
Maka nilai Resistor tersebut adalah 10 * 105 = 1.000.000 Ohm atau 1 MOhm dengan toleransi 10%.
5 Gelang Warna
Masukkan angka langsung dari kode warna Gelang ke-1 (pertama)
Masukkan angka langsung dari kode warna Gelang ke-2
Masukkan angka langsung dari kode warna Gelang ke-3
Masukkan Jumlah nol dari kode warna Gelang ke-4 atau pangkatkan angka tersebut dengan 10 (10n)
Merupakan Toleransi dari nilai Resistor tersebut
Contoh :
Gelang ke 1 : Coklat = 1
Gelang ke 2 : Hitam = 0
Gelang ke 3 : Hijau = 5
Gelang ke 4 : Hijau = 5 nol dibelakang angka gelang ke-2; atau kalikan 105
Gelang ke 5 : Perak = Toleransi 10%
Maka nilai Resistor tersebut adalah 105 * 105 = 10.500.000 Ohm atau 10,5 MOhm dengan toleransi 10%.
Contoh-contoh perhitungan lainnya :
Merah, Merah, Merah, Emas → 22 * 10² = 2.200 Ohm atau 2,2 Kilo Ohm dengan 5% toleransi
Kuning, Ungu, Orange, Perak → 47 * 10³ = 47.000 Ohm atau 47 Kilo Ohm dengan 10% toleransi
Cara menghitung Toleransi :
2.200 Ohm dengan Toleransi 5% =
2200 – 5% = 2.090
2200 + 5% = 2.310
ini artinya nilai Resistor tersebut akan berkisar antara 2.090 Ohm ~ 2.310 Ohm
Untuk mempermudah menghafalkan warna di Resistor, kami memakai singkatan seperti berikut :
HI CO ME O KU JAU BI UNG A PU
(HItam, COklat, MErah, Orange, KUning. HiJAU, BIru, UNGu, Abu-abu, PUtih)
- Berdasarkan Kode Angka
Membaca nilai Resistor yang berbentuk komponen Chip lebih mudah dari Komponen Axial, karena tidak menggunakan kode warna sebagai pengganti nilainya. Kode yang digunakan oleh Resistor yang berbentuk Komponen Chip menggunakan Kode Angka langsung jadi sangat mudah dibaca atau disebut dengan Body Code Resistor (Kode Tubuh Resistor)
Contoh :
Kode Angka yang tertulis di badan Komponen Chip Resistor adalah 4 7 3;
Contoh cara pembacaan dan cara menghitung nilai resistor berdasarkan kode angka adalah sebagai berikut :
Masukkan Angka ke-1 langsung = 4
Masukkan Angka ke-2 langsung = 7
Masukkan Jumlah nol dari Angka ke 3 = 000 (3 nol) atau kalikan dengan 10³
Maka nilainya adalah 47.000 Ohm atau 47 kilo Ohm (47 kOhm)
Contoh-contoh perhitungan lainnya :
222 → 22 * 10² = 2.200 Ohm atau 2,2 Kilo Ohm
103 → 10 * 10³ = 10.000 Ohm atau 10 Kilo Ohm
334 → 33 * 104 = 330.000 Ohm atau 330 Kilo Ohm
Ada juga yang memakai kode angka seperti dibawah ini :
(Tulisan R menandakan letaknya koma decimal)
4R7 = 4,7 Ohm
0R22 = 0,22 Ohm
Keterangan :
Ohm = Ω
Kilo Ohm = KΩ
Mega Ohm = MΩ
1.000 Ohm = 1 kilo Ohm (1 KΩ )
1.000.000 Ohm = 1 Mega Ohm (1 MΩ)
1.000 kilo Ohm = 1 Mega Ohm (1 MΩ)
Resistor mempunyai nilai resistansi (tahanan) tertentu yang dapat memproduksi tegangan listrik di antara kedua pin dimana nilai tegangan terhadap resistansi tersebut berbanding lurus dengan arus yang mengalir, berdasarkan persamaan Hukum OHM :
Dimana V adalah tegangan, I adalah kuat arus, dan R adalah Hambatan
Relay
Relay adalah Saklar (Switch)
yang dioperasikan secara listrik dan merupakan komponen
Electromechanical (Elektromekanikal) yang terdiri dari 2 bagian utama
yakni Elektromagnet (Coil) dan Mekanikal (seperangkat Kontak
Saklar/Switch). Relay menggunakan Prinsip Elektromagnetik untuk
menggerakkan Kontak Saklar sehingga dengan arus listrik yang kecil (low power)
dapat menghantarkan listrik yang bertegangan lebih tinggi. Sebagai
contoh, dengan Relay yang menggunakan Elektromagnet 5V dan 50 mA mampu
menggerakan Armature Relay (yang berfungsi sebagai saklarnya) untuk
menghantarkan listrik 220V 2A. Relay memiliki simbol seperti gambar di
bawah ini
1.Pengertian Photodiode (Dioda Foto)
Proses tersebut terjadi pada saat dioda photo menerima cahaya dan dioda photo menjadi konduk (ON) sehingga basis TR1 mendapat bias tegangan dan transistor ON dimana terminal output diambil pada terminal kolektor transistor TR1 sehingga terminal output dihubungkan ke ground oleh TR1 melalui kolektor dan emitornya. Begitu sebaliknya pada saat dioda photo tidak menerima cahaya maka basis transistor tidak mendapat bias sehingga transistor TR1 OFF dan terminal output mendapat sumber tegangan dari VCC melalui RL sehingga berlogika HIGH.
3.Prinsip Kerja Photodioda
Terdapat dua model
pengoperasian pada Photodiode, yaitu dengan model Photovoltaic dan model
Photoconductive.
1. Model Photovoltaic
Seperti Sel Surya (Solar
Sel), Photodiode juga dapat menghasilkan tegangan yang dapat diukur. Namun
tegangan dan arus listrik yang dihasilkannya sangat kecil dan tidak cukup untuk
menyala sebuah lampu maupun perangkat elektronika.
2. Model Photoconductive
Karena tidak dapat
menghasilkan arus listrik yang cukup untuk kebutuhan rangkaian elektronika,
maka biasanya Photodiode digabungkan dengan sumber tegangan yang dipasangkan
secara bias terbalik (reversed biased voltage). Model Photoconductive ini
menggunakan Sumber tegangan lain sebagai penggerak beban atau rangkaian
Elektronika, sedangkan Photodiode sendiri berfungsi sebagai Saklar (Switch)
yang mengalirkan arus listrik ketika dikenakan cahaya.
Komponen ini memiliki sifat yang sama dengan transistor yaitu menghasilkan kondisi cut off dan saturasi. Perbedaannya adalah, bilamana pada transistor kondisi cut off terjadi saat tidak ada arus yang mengalir melalui basis ke emitor dan kondisi saturasi terjadi saat ada arus mengalir melalui basis ke emitor maka pada phototransistor kondisi cut off terjadi saat tidak ada cahaya infrared yang diterima dan kondisi saturasi terjadi saat ada cahaya infrared yang diterima. Kondisi cut off adalah kondisi di mana transistor berada dalam keadaan OFF sehingga arus dari collector tidak mengalir ke emitor. Pada rangkaian gambar diatas, arus akan mengalir dan membias basis transistor Q2 C9014. Kondisi saturasi adalah kondisi di mana transistor berada dalam keadaan ON sehingga arus dari collector mengalir ke emitor dan menyebabkan transistor Q2 tidak mendapat bias atau OFF.
Grafik kerateristik sensor phototransistor
Gambar 15. grafik kerateristik sensor phototransistor
Generator mengalirkan arus ke R3 lalu ke ground,lalu ada arus ke phototransistor ,lalu ada arus kerelay .saat tidak menerima cahaya maka nilai resistansi dari phototransistor besar sehingga arus akan mengalir kecil dan tidak cukup untuk menghidupkan LED , karena arus mengalir kecil 0,7 V ke base transistor sehingga transistor off,ketika transistor off maka arus dari relay tidak terhubung ke ground sehingga relay off lalu siwtch akan pindah kekanan dan ke rangkaian tertutup lampu dengan begitu lampu hidup.
Link Download[kembali]
No comments:
Post a Comment