- Baterai
Baterai digunakan pada rangkaian ini berfungsi sebagai sumber energi listrik untuk menjalankan rangkaian.
- DC Motor
DC motor digunakan pada rangkaian ini untuk mengetahui getaran yang terjadi.
B. Bahan
- Transistor 2N222
Spesifikasi :
Transistor Polarity | NPN | |||
Collector Emitter Voltage V(br)ceo | 30V | |||
Transition Frequency Typ ft | - | |||
DC Collector Current | 800mA | |||
Power Dissipation Pd | 500mW | |||
DC Current Gain hFE | 100 | |||
Operating Temperature Range | - | |||
Transistor Case Style | TO-18 | |||
No. of Pins | 3 | |||
MSL | - |
Konfigurasi PIN :
1. Emitter
2. Base
3. Collector
- LED
A. Spesifikasi :
Spesifikasi :
Resistance (Ohms) : 220 V
Power (Watts) : 0,25 W, ¼ W
Tolerance : ± 5%
Packaging : Bulk
Composition : Carbon Film
Temperature Coefficient : 350ppm/°C
Lead Free Status : Lead Free
RoHS Status : RoHs Complient
A. Spesifikasi :
- Trigger Voltage (Voltage across coil) : 5V DC
- Trigger Current (Nominal current) : 70mA
- Maximum AC load current: 10A @ 250/125V AC
- Maximum DC load current: 10A @ 30/28V DC
- Compact 5-pin configuration with plastic moulding
- Operating time: 10msec Release time: 5msec
- Maximum switching: 300 operating/minute (mechanically)
Nomor PIN | Nama Pin | Deskripsi |
1 | Coil End 1 | Digunakan untuk memicu (On / Off) Relay, Biasanya satu ujung terhubung ke 5V dan ujung lainnya ke ground |
2 | Coil End 2 | Digunakan untuk memicu (On / Off) Relay, Biasanya satu ujung terhubung ke 5V dan ujung lainnya ke ground |
3 | Common (COM) | Common terhubung ke salah satu Ujung Beban yang akan dikontrol |
4 | Normally Close (NC) | Ujung lain dari beban terhubung ke NO atau NC. Jika terhubung ke NC beban tetap terhubung sebelum pemicu |
5 | Normally Open (NO) | Ujung lain dari beban terhubung ke NO atau NC. Jika terhubung ke NO, beban tetap terputus sebelum pemicu |
Spesifikasi dari Sound Sensor:
· Tegangan kerja: DC 3.3-5V
· Sensitivitas yang Dapat Disesuaikan
· Dimensi: 32 x 17 mm
· Indikasi keluaran sinyal
· Output sinyal saluran tunggal
· Dengan lubang baut penahan, pemasangan yang mudah
· Mengeluarkan level rendah dan sinyal menyala ketika ada suara
· Output berupa digital switching output (0 dan 1 high dan low)
Konfigurasi Sound Sensor :
Grafik Touch Sensor
- Sensor PIR
Spesifikasi :
- Vin : DC 5V � 9V
- Radius : 180 derajat
- Jarak deteksi : 5 � 7 meter
- Output : Digital TTL
- Memiliki setting sensitivitas
- Memiliki setting time delay
- Dimensi : 3,2 cm x 2,4 cm x 2,3 cm
- Berat : 10 gr
Konfigurasi PIN :
- Pengatur Waktu Jeda : Digunakan untuk mengatur lama pulsa high setelah terdeteksi terjadi gerakan dan gerakan telah berahir. *
- Pengatur Sensitivitas : Pengatur tingkat sensitivitas sensor PIR *
- Regulator 3VDC : Penstabil tegangan menjadi 3V DC
- Dioda Pengaman : Mengamankan sensor jika terjadi salah pengkabelan VCC dengan GND
- DC Power : Input tegangan dengan range (3 – 12) VDC (direkekomendasikan menggunakan input 5VDC).
- Output Digital : Output digital sensor
- Ground : Hubungkan dengan ground (GND)
- BISS0001 : IC Sensor PIR
- Pengatur Jumper : Untuk mengatur output dari pin digital.
- Magnetic Reed Switch Sensor
Jenis reed: Normally Open Tegangan kerja: 3.3-5v Output: digital (0 dan 1) Ukuran kecil: 3.2x1.4cm Comparator: wide voltage LM393 Lobang baut: tersedia
Resistor atau hambatan adalah salah satu komponen elektronika yang memiliki nilai hambatan tertentu, dimana hambatan ini akan menghambat arus listrik yang mengalir melaluinya. Sebuah resistor biasanya terbuat dari bahan campuran Carbon. Namun tidak sedikit juga resistor yang terbuat dari kawat nikrom, sebuah kawat yang memiliki resistansi yang cukup tinggi dan tahan pada arus kuat. Contoh lain penggunaan kawat nikrom dapat dilihat pada elemen pemanas setrika. Jika elemen pemanas tersebut dibuka, maka terdapat seutas kawat spiral yang biasa disebut dengan kawat nikrom.
Satuan Resistor adalah Ohm (simbol: Ω) yang merupakan satuan SI untuk resistansi listrik. Dalam sejarah, kata ohm itu diambil dari nama salah seorang fisikawan hebat asal German bernama George Simon Ohm. Beliau juga yang mencetuskan keberadaan hukum ohm yang masih berlaku hingga sekarang.
Resistor berfungsi sebagai penghambat arus listrik. Jika ditinjau secara mikroskopik, unsur-unsur penyusun resistor memiliki sedikit sekali elektron bebas. Akibatnya pergerakan elektronya menjadi sangat lambat. Sehingga arus yang terukur pada multimeter akan menunjukan angka yang lebih rendah jika dibandingkan rangkaian listrik tanpa resistor.
Namun meskipun misalnya kita menyusun rangkaian listrik tanpa resistor, bukan berarti tidak ada hambatan listrik didalamnya. Karena setiap konduktor pasti memiliki nilai hambatan, meskipun relatif kecil. Namun dalam perhitungan matematis, biasanya kita abaikan nilai hambatan pada konduktor tersebut, dan kita anggap konduktor dalam kondisi ideal. Itu berarti besar resistansi konduktor adalah nol.
Simbol dari resistor merupakan sebagai berikut :
Cara Menghitung Nilai Resistor
Berdasarkan bentuknya dan proses pemasangannya pada PCB, Resistor terdiri 2 bentuk yaitu bentuk Komponen Axial/Radial dan Komponen Chip. Untuk bentuk Komponen Axial/Radial, nilai resistor diwakili oleh kode warna sehingga kita harus mengetahui cara membaca dan mengetahui nilai-nilai yang terkandung dalam warna tersebut sedangkan untuk komponen chip, nilainya diwakili oleh Kode tertentu sehingga lebih mudah dalam membacanya.
- Berdasarkan Kode Warna
Seperti yang dikatakan sebelumnya, nilai Resistor yang berbentuk Axial adalah diwakili oleh Warna-warna yang terdapat di tubuh (body) Resistor itu sendiri dalam bentuk Gelang. Umumnya terdapat 4 Gelang di tubuh Resistor, tetapi ada juga yang 5 Gelang.
Gelang warna Emas dan Perak biasanya terletak agak jauh dari gelang warna lainnya sebagai tanda gelang terakhir. Gelang Terakhirnya ini juga merupakan nilai toleransi pada nilai Resistor yang bersangkutan.
Tabel dibawah ini adalah warna-warna yang terdapat di Tubuh Resistor :
4 Gelang Warna
Masukkan angka langsung dari kode warna Gelang ke-1 (pertama)
Masukkan angka langsung dari kode warna Gelang ke-2
Masukkan Jumlah nol dari kode warna Gelang ke-3 atau pangkatkan angka tersebut dengan 10 (10n)
Merupakan Toleransi dari nilai Resistor tersebut
Contoh :
Gelang ke 1 : Coklat = 1
Gelang ke 2 : Hitam = 0
Gelang ke 3 : Hijau = 5 nol dibelakang angka gelang ke-2; atau kalikan 105
Gelang ke 4 : Perak = Toleransi 10%
Maka nilai Resistor tersebut adalah 10 * 105 = 1.000.000 Ohm atau 1 MOhm dengan toleransi 10%.
5 Gelang Warna
Masukkan angka langsung dari kode warna Gelang ke-1 (pertama)
Masukkan angka langsung dari kode warna Gelang ke-2
Masukkan angka langsung dari kode warna Gelang ke-3
Masukkan Jumlah nol dari kode warna Gelang ke-4 atau pangkatkan angka tersebut dengan 10 (10n)
Merupakan Toleransi dari nilai Resistor tersebut
Contoh :
Gelang ke 1 : Coklat = 1
Gelang ke 2 : Hitam = 0
Gelang ke 3 : Hijau = 5
Gelang ke 4 : Hijau = 5 nol dibelakang angka gelang ke-2; atau kalikan 105
Gelang ke 5 : Perak = Toleransi 10%
Maka nilai Resistor tersebut adalah 105 * 105 = 10.500.000 Ohm atau 10,5 MOhm dengan toleransi 10%.
Contoh-contoh perhitungan lainnya :
Merah, Merah, Merah, Emas → 22 * 10² = 2.200 Ohm atau 2,2 Kilo Ohm dengan 5% toleransi
Kuning, Ungu, Orange, Perak → 47 * 10³ = 47.000 Ohm atau 47 Kilo Ohm dengan 10% toleransi
Cara menghitung Toleransi :
2.200 Ohm dengan Toleransi 5% =
2200 – 5% = 2.090
2200 + 5% = 2.310
ini artinya nilai Resistor tersebut akan berkisar antara 2.090 Ohm ~ 2.310 Ohm
Untuk mempermudah menghafalkan warna di Resistor, kami memakai singkatan seperti berikut :
HI CO ME O KU JAU BI UNG A PU
(HItam, COklat, MErah, Orange, KUning. HiJAU, BIru, UNGu, Abu-abu, PUtih)
- Berdasarkan Kode Angka
Membaca nilai Resistor yang berbentuk komponen Chip lebih mudah dari Komponen Axial, karena tidak menggunakan kode warna sebagai pengganti nilainya. Kode yang digunakan oleh Resistor yang berbentuk Komponen Chip menggunakan Kode Angka langsung jadi sangat mudah dibaca atau disebut dengan Body Code Resistor (Kode Tubuh Resistor)
Contoh :
Kode Angka yang tertulis di badan Komponen Chip Resistor adalah 4 7 3;
Contoh cara pembacaan dan cara menghitung nilai resistor berdasarkan kode angka adalah sebagai berikut :
Masukkan Angka ke-1 langsung = 4
Masukkan Angka ke-2 langsung = 7
Masukkan Jumlah nol dari Angka ke 3 = 000 (3 nol) atau kalikan dengan 10³
Maka nilainya adalah 47.000 Ohm atau 47 kilo Ohm (47 kOhm)
Contoh-contoh perhitungan lainnya :
222 → 22 * 10² = 2.200 Ohm atau 2,2 Kilo Ohm
103 → 10 * 10³ = 10.000 Ohm atau 10 Kilo Ohm
334 → 33 * 104 = 330.000 Ohm atau 330 Kilo Ohm
Ada juga yang memakai kode angka seperti dibawah ini :
(Tulisan R menandakan letaknya koma decimal)
4R7 = 4,7 Ohm
0R22 = 0,22 Ohm
Keterangan :
Ohm = Ω
Kilo Ohm = KΩ
Mega Ohm = MΩ
1.000 Ohm = 1 kilo Ohm (1 KΩ )
1.000.000 Ohm = 1 Mega Ohm (1 MΩ)
1.000 kilo Ohm = 1 Mega Ohm (1 MΩ)
Resistor mempunyai nilai resistansi (tahanan) tertentu yang dapat memproduksi tegangan listrik di antara kedua pin dimana nilai tegangan terhadap resistansi tersebut berbanding lurus dengan arus yang mengalir, berdasarkan persamaan Hukum OHM :
Dimana V adalah tegangan, I adalah kuat arus, dan R adalah Hambatan
Ground
Ground
atau pertanahan adalah bagian dari Peralatan Listrik rumah. Namun
kebanyakan dari masyatrakat Indonesia sudah terbiasa menyebut pertanahan
atau gruonding ini dengan kata arde.
Ground
atau arde pada instalasi listrik berguna sebagai pencegah terjadinya
kontak antara makhluk hidup dengan tegangan listrik yang terekspos
akibat terjadi kegagalan isolasi. Ground dalam rumah Anda terpasang
dengan dua macam, yaitu untuk instalasi listrik rumah dan instalasi
penangkal petir.Grounding Memiliki simbol seperti gambar di bawah ini :
Ground atau arde pada instalasi listrik berguna sebagai pencegah terjadinya kontak antara makhluk hidup dengan tegangan listrik yang terekspos akibat terjadi kegagalan isolasi. Ground dalam rumah Anda terpasang dengan dua macam, yaitu untuk instalasi listrik rumah dan instalasi penangkal petir.Grounding Memiliki simbol seperti gambar di bawah ini :
- Power Supply
Power supply atau pencatu daya adalah sebuah alat elektronik yang berfungsi memberikan tegangan dan arus listrik pada komponen-komponen lainnya. Pada dasarnya power supply membutuhkan sumber listrik yang kemudian diubah menjadi sumber daya yang dibutuhkan oleh berbagai perangkat elektronik lainnya. Arus listrik yang disalurkan oleh power supply ini adalah jenis arus bolak-balik (AC). Namun karena kelebihan dari power supply ini, maka alat ini juga dapat mengubah arus bolak-balik (AC) menjadi arus searah (DC). Power supply memiliki simbol sebagai berikut :
Transistor adalah alat semikonduktor yang dipakai sebagai penguat, sebagai sirkuit pemutus dan penyambung arus (switching), stabilisasi tegangan, dan modulasi sinyal. Transistor dapat berfungsi semacam kran listrik, di mana berdasarkan arus inputnya (BJT) atau tegangan inputnya (FET), memungkinkan pengaliran listrik yang sangat akurat dari sirkuit sumber listriknya. Kapasitor NPN memiliki simbol seperti gambar di bawah ini:
Terdapat rumus rumus dalam mencari transistor seperti rumus di bawah ini:V = (Vbat - Vled)Rled = V / IleIB = (VBB - VBE) / RB VCE = VCC - ICRC PD = VCE.IC Karakteristik Input
Transistor adalah komponen aktif yang menggunakan aliran electron sebagai prinsip kerjanya didalam bahan. Sebuah transistor memiliki tiga daerah doped yaitu daerah emitter, daerah basis dan daerah disebut kolektor. Transistor ada dua jenis yaitu NPN dan PNP. Transistor memiliki dua sambungan: satu antara emitter dan basis, dan yang lain antara kolektor dan basis. Karena itu, sebuah transistor seperti dua buah dioda yang saling bertolak belakang yaitu dioda emitter-basis, atau disingkat dengan emitter dioda dan dioda kolektor-basis, atau disingkat dengan dioda kolektor.
Bagian emitter-basis dari transistor merupakan dioda, maka apabila dioda emitter-basis dibias maju maka kita mengharapkan akan melihat grafik arus terhadap tegangan dioda biasa. Saat tegangan dioda emitter-basis lebih kecil dari potensial barriernya, maka arus basis (Ib) akan kecil. Ketika tegangan dioda melebihi potensial barriernya, arus basis (Ib) akan naik secara cepat.
Karakteristik Output
Sebuah transistor memiliki empat daerah operasi yang berbeda yaitu daerah aktif, daerah saturasi, daerah cutoff, dan daerah breakdown. Jika transistor digunakan sebagai penguat, transistor bekerja pada daerah aktif. Jika transistor digunakan pada rangkaian digital, transistor biasanya beroperasi pada daerah saturasi dan cutoff. Daerah breakdown biasanya dihindari karena resiko transistor menjadi hancur terlalu besar.
Emitter-Stabilized Bias adalah rangkaian Fixed bias yang ditambahkan tahanan RE seperti gambar 12.
Gambar 12 Rangkaian Emitter-Stabilized Bias
sehingga tahanan RE kalau dilihat dari input untuk mencari arus IB adalah sebesar (β+1)RE.
- OP AMP
Operational Amplifier atau lebih dikenal dengan istilah Op-Amp adalah salah satu dari bentuk IC Linear yang berfungsi sebagai Penguat Sinyal listrik. Sebuah Op-Amp terdiri dari beberapa Transistor, Dioda, Resistor dan Kapasitor yang terinterkoneksi dan terintegrasi sehingga memungkinkannya untuk menghasilkan Gain (penguatan) yang tinggi pada rentang frekuensi yang luas.
Op Amp Sebagai Penguat Non Inverting
Penguat Non Inverting adalah suatu rangkaian penguat yang berfungsi menguatkaan sinyal dan hasil sinyal yang dikuatkan tetap sefasa dengan sinyal inputannya, hasil dari sinyal input dan output rangkaian non inverting dapat dilihat pada Gambar 1. Pada dasarnya penguat non inverting digunakan sebagai pengkondisi sinyal inputan sensor yang terlalu kecil sehingga dibutuhkan penguatan untuk diproses. intinya penguat non inverting ke balikkan dari penguat inverting.
Gambar 1 Rangkaian Penguat Non Inverting
Keterangan GambarVin : Tegangan MasukanVout : Tegangan KeluaranRg : Resistansi ground Rf : Resistansi feedback
Gambar 2 Sinyal Input dan Output Penguat Non Inverting
Fungsi Penguat Non Inverting
Fungsi dari penguat non inverting kurang lebih sama dengan penguat inverting hanya saja polaritas output yang dihasilkan sama dengan sinyal inputnya. Keluaran sensor dan tranduser pada umumnya mempunyai tegangan yang sangat kecil hingga mikro volt, sehingga diperlukan penguat dengan impedansi masukan rendah. Rangkaian penguat non inverting akan menerima arus atau tegangan dari tranduser sangat kecil dan akan membangkitkan arus atau tegangan yang lebih besar
Analisis Penguatan Op Amp Non Inverting
Dalam menganalisis rangkaian Op-Amp sebagai penguat terdapat dua aturan penting yang perlu diperhatikan. Kedua aturan tersebut menggunakan karakteristik Op-Amp ideal. Aturan ini dalam beberapa literatur dinamakan golden rule, yang berisi :
1. Perbedaan tegangan antara kedua masukan Op-Amp adalah nol (V+ - V- = 0 atau V+ = V-), hal ini bertujuan menghindari adanya tegangan offset. Aturan pertama ini sering disebut dengan virtual ground.
2. Arus yang mengalir pada kedua masukan Op-Amp adalah nol (I+ = I- = 0), hal ini dikarenakan impedansi input pada Op-Amp sangat besar ( Zin = ∞). Dengan memahami kedua aturan tersebut, analisis dari rangkaian Op-Amp akan menjadi lebih mudah.
Untuk memulai analisis rangkaian penguat non-inverting, terapkan hukum Kirchoff arus pada titik cabang A dan asumsi I+ = I- = 0, sehingga gambar rangkaian penguat non-inverting menjadi seperti Gambar 3.
Gambar 3 Penjabaran Rangkaian Penguat Non Inverting untuk mempermudah penurunan rumus
Berikut penjabaran penurunan rumus op-amp non inverting berdasarkan gambar 3didapatkan persamaan arus yang mengalir pada titik cabang A, sebagai berikut:
Persamaan 1
𝐼𝑓 = 𝐼gDengan menggunakan teori tegangan titik simpul, persamaan (1) dapat dijabarkan menjadi: Persamaan 2Karena V+ = Vin dan V- = VA , serta asumsi nilai V+ = V- maka dapat dituliskan nilai Vin = VA. Sehingga persamaan (2) menjadi:
Persamaan 3
Dengan menyederhanakan persamaan (3), dapat diperoleh persamaan tegangan keluaran dari penguat non-inverting:
Persamaan 4
Jika penguatan merupakan perbandingan antara tegangan keluaran dan tegangan masukan, maka dari persamaan (4) dapat diperoleh penguatan dari penguat non-inverting yaitu:
Persamaan 5
Simbol opamp di proteus:
Bagian emitter-basis dari transistor merupakan dioda, maka apabila dioda emitter-basis dibias maju maka kita mengharapkan akan melihat grafik arus terhadap tegangan dioda biasa. Saat tegangan dioda emitter-basis lebih kecil dari potensial barriernya, maka arus basis (Ib) akan kecil. Ketika tegangan dioda melebihi potensial barriernya, arus basis (Ib) akan naik secara cepat.
Sebuah transistor memiliki empat daerah operasi yang berbeda yaitu daerah aktif, daerah saturasi, daerah cutoff, dan daerah breakdown. Jika transistor digunakan sebagai penguat, transistor bekerja pada daerah aktif. Jika transistor digunakan pada rangkaian digital, transistor biasanya beroperasi pada daerah saturasi dan cutoff. Daerah breakdown biasanya dihindari karena resiko transistor menjadi hancur terlalu besar.
- OP AMP
Operational Amplifier atau lebih dikenal dengan istilah Op-Amp adalah salah satu dari bentuk IC Linear yang berfungsi sebagai Penguat Sinyal listrik. Sebuah Op-Amp terdiri dari beberapa Transistor, Dioda, Resistor dan Kapasitor yang terinterkoneksi dan terintegrasi sehingga memungkinkannya untuk menghasilkan Gain (penguatan) yang tinggi pada rentang frekuensi yang luas.
Op Amp Sebagai Penguat Non Inverting
Penguat Non Inverting adalah suatu rangkaian penguat yang berfungsi menguatkaan sinyal dan hasil sinyal yang dikuatkan tetap sefasa dengan sinyal inputannya, hasil dari sinyal input dan output rangkaian non inverting dapat dilihat pada Gambar 1. Pada dasarnya penguat non inverting digunakan sebagai pengkondisi sinyal inputan sensor yang terlalu kecil sehingga dibutuhkan penguatan untuk diproses. intinya penguat non inverting ke balikkan dari penguat inverting.
Fungsi dari penguat non inverting kurang lebih sama dengan penguat inverting hanya saja polaritas output yang dihasilkan sama dengan sinyal inputnya. Keluaran sensor dan tranduser pada umumnya mempunyai tegangan yang sangat kecil hingga mikro volt, sehingga diperlukan penguat dengan impedansi masukan rendah. Rangkaian penguat non inverting akan menerima arus atau tegangan dari tranduser sangat kecil dan akan membangkitkan arus atau tegangan yang lebih besar
Analisis Penguatan Op Amp Non Inverting
Dalam menganalisis rangkaian Op-Amp sebagai penguat terdapat dua aturan penting yang perlu diperhatikan. Kedua aturan tersebut menggunakan karakteristik Op-Amp ideal. Aturan ini dalam beberapa literatur dinamakan golden rule, yang berisi :
1. Perbedaan tegangan antara kedua masukan Op-Amp adalah nol (V+ - V- = 0 atau V+ = V-), hal ini bertujuan menghindari adanya tegangan offset. Aturan pertama ini sering disebut dengan virtual ground.
2. Arus yang mengalir pada kedua masukan Op-Amp adalah nol (I+ = I- = 0), hal ini dikarenakan impedansi input pada Op-Amp sangat besar ( Zin = ∞). Dengan memahami kedua aturan tersebut, analisis dari rangkaian Op-Amp akan menjadi lebih mudah.
Untuk memulai analisis rangkaian penguat non-inverting, terapkan hukum Kirchoff arus pada titik cabang A dan asumsi I+ = I- = 0, sehingga gambar rangkaian penguat non-inverting menjadi seperti Gambar 3.
Persamaan 1
𝐼𝑓 = 𝐼g
Persamaan 3
Dengan menyederhanakan persamaan (3), dapat diperoleh persamaan tegangan keluaran dari penguat non-inverting:
Persamaan 4
Jika penguatan merupakan perbandingan antara tegangan keluaran dan tegangan masukan, maka dari persamaan (4) dapat diperoleh penguatan dari penguat non-inverting yaitu:
Persamaan 5
- Siapkan alat dan bahan ( sensor, resistor, transistor, relay, buzzer ground, power supply, logicstate, led, baterai, voltmeter)
- letakkan alat dan bahan sesuai keinginan
- Sambung alat dan bahan
- Jalankan rangkaian
Prinsip Kerja
Ketika mobil mendekati pintu garasi PIR sensor mendeteksi adanya mobil dan akan menghidupkan motor pembuka pintu garasi dan buzzer. Suara buzzer akan diterima oleh sound sensor dan sensor akan menjalankan motor untuk menyemprotkan disinfektan serta menyalakan lampu garasi. Untuk menghidupkan motor penutup pintu garasi bisa menggunakan magnetic reed switch sensor maupun touch sensor yang diletakkan didalam garasi.
Download Datasheet Transistor 2n222
Download Datasheet Sound Sensor
Download Datasheet Magnetic Reed Switch Sensor
Download Datasheet Touch Sensor
No comments:
Post a Comment